login
A113387
Triangle, read by rows, equal to the matrix cube of A113381.
5
1, 6, 1, 48, 15, 1, 605, 255, 24, 1, 11196, 5630, 624, 33, 1, 280440, 159210, 19484, 1155, 42, 1, 8981460, 5584635, 731664, 46541, 1848, 51, 1, 353283128, 236051661, 32532732, 2173248, 91175, 2703, 60, 1, 16567072675, 11741443007, 1683566556
OFFSET
0,2
FORMULA
Column k of A113381^3 = column 0 of A113389^(3*k+2) for k>=0.
EXAMPLE
Triangle A113381^3 begins:
1;
6,1;
48,15,1;
605,255,24,1;
11196,5630,624,33,1;
280440,159210,19484,1155,42,1;
8981460,5584635,731664,46541,1848,51,1;
353283128,236051661,32532732,2173248,91175,2703,60,1;
16567072675,11741443007,1683566556,116647443,5086116,157760,3720,69,1;
PROG
(PARI) T(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(3*j-2))[i-j+1, 1])); )); A=B); (matrix(#A, #A, r, c, if(r>=c, (A^(3*c-1))[r-c+1, 1]))^3)[n+1, k+1]
CROSSREFS
Cf. A113381, A113388 (column 0), A113389.
Sequence in context: A138192 A136235 A113392 * A290316 A090435 A136237
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2005
STATUS
approved