Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 13 2017 23:21:04
%S 1,2,1,6,8,1,37,84,14,1,429,1296,252,20,1,7629,27850,5957,510,26,1,
%T 185776,784146,179270,16180,858,32,1,5817106,27630378,6641502,623115,
%U 34125,1296,38,1,224558216,1177691946,294524076,28470525,1599091,61952
%N Triangle, read by rows, equal to the matrix square of A113370. Also given by the product: P^2 = Q*(R^-2)*Q^3, using triangular matrices P=A113370, Q=A113381 and R=A113389.
%F Column k of A113370^2 = column 0 of A113381^(3*k+1).
%e Triangle A113370^2 begins:
%e 1;
%e 2,1;
%e 6,8,1;
%e 37,84,14,1;
%e 429,1296,252,20,1;
%e 7629,27850,5957,510,26,1;
%e 185776,784146,179270,16180,858,32,1;
%e 5817106,27630378,6641502,623115,34125,1296,38,1;
%e 224558216,1177691946,294524076,28470525,1599091,61952,1824,44,1;
%o (PARI) T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+1,k+1]
%Y Cf. A113370, A113381, A113389; A113375 (column 0), A113376 (column 1), A113377 (column 2); A113378 (P^3), A113387 (Q^3).
%K nonn,tabl
%O 0,2
%A _Paul D. Hanna_, Nov 14 2005