login
Decimal expansion of Gamma(1/3)^3/Pi^2.
0

%I #17 Jun 28 2023 08:21:23

%S 1,9,4,7,9,9,7,9,8,1,6,0,8,4,2,4,4,7,7,5,4,5,1,6,4,1,5,7,1,2,8,0,7,9,

%T 5,9,6,0,5,1,9,0,8,4,7,4,4,0,9,9,4,9,0,5,0,9,4,1,0,3,3,9,1,2,5,8,8,6,

%U 9,5,1,4,1,1,8,0,9,7,5,2,5,4,3,6,8,7,1,5,0,2,0,2,5,6,8,6,6,2,7,5,0,9,9,6,3

%N Decimal expansion of Gamma(1/3)^3/Pi^2.

%C Known to be transcendental.

%H Michel Waldschmidt, <a href="https://hal.science/hal-00407231/">Elliptic functions and transcendance</a>, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008. (hal-00407231)

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e 1.9479979816084244775451641...

%t RealDigits[Gamma[1/3]^3/Pi^2, 10, 120][[1]] (* _Amiram Eldar_, Jun 28 2023 *)

%o (PARI) gamma(1/3)^3/Pi^2

%Y Cf. A002388, A073005.

%K cons,nonn

%O 0,2

%A _Benoit Cloitre_, Jan 07 2006