OFFSET
1,3
COMMENTS
If, for p = prime, p^(m_{n,p}) is highest power of p dividing n, m = nonnegative integer, then a(n) is product over all primes of F(p)^(m_{n,p}), where F(p) = p-th Fibonacci number (A000045).
LINKS
Danny Rorabaugh, Table of n, a(n) for n = 1..4000
FORMULA
Totally multiplicative with a(p) = F(p). - Franklin T. Adams-Watters, Jun 05 2006
EXAMPLE
63 = 3^2 * 7^1. So a(63) = F(3)^2 * F(7)^1 = 4 * 13 = 52.
MATHEMATICA
Times@@@Table[Fibonacci[#[[1]]]^#[[2]]&/@FactorInteger[n], {n, 60}] (* Harvey P. Dale, Mar 30 2024 *)
PROG
(Sage) [1]+[prod([fibonacci(x[0])^x[1] for x in factor(n)]) for n in range(2, 53)] # Danny Rorabaugh, Apr 03 2015
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Leroy Quet, Oct 16 2005
EXTENSIONS
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005
Previous Mathematica program deleted by Harvey P. Dale, Mar 30 2024
STATUS
approved