login
A113175
Replace each prime p in prime-factorization of n with p-th Fibonacci number.
4
1, 1, 2, 1, 5, 2, 13, 1, 4, 5, 89, 2, 233, 13, 10, 1, 1597, 4, 4181, 5, 26, 89, 28657, 2, 25, 233, 8, 13, 514229, 10, 1346269, 1, 178, 1597, 65, 4, 24157817, 4181, 466, 5, 165580141, 26, 433494437, 89, 20, 28657, 2971215073, 2, 169, 25, 3194, 233
OFFSET
1,3
COMMENTS
If, for p = prime, p^(m_{n,p}) is highest power of p dividing n, m = nonnegative integer, then a(n) is product over all primes of F(p)^(m_{n,p}), where F(p) = p-th Fibonacci number (A000045).
LINKS
FORMULA
Totally multiplicative with a(p) = F(p). - Franklin T. Adams-Watters, Jun 05 2006
EXAMPLE
63 = 3^2 * 7^1. So a(63) = F(3)^2 * F(7)^1 = 4 * 13 = 52.
MATHEMATICA
Times@@@Table[Fibonacci[#[[1]]]^#[[2]]&/@FactorInteger[n], {n, 60}] (* Harvey P. Dale, Mar 30 2024 *)
PROG
(Sage) [1]+[prod([fibonacci(x[0])^x[1] for x in factor(n)]) for n in range(2, 53)] # Danny Rorabaugh, Apr 03 2015
CROSSREFS
Sequence in context: A337943 A275213 A113176 * A109191 A087123 A097131
KEYWORD
mult,nonn,easy
AUTHOR
Leroy Quet, Oct 16 2005
EXTENSIONS
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005
Previous Mathematica program deleted by Harvey P. Dale, Mar 30 2024
STATUS
approved