%I #9 Sep 08 2013 13:30:50
%S 1,1,2,11,141,2928,82597,2925973,124502114,6179425823,350316271761,
%T 22326710345256,1579953165170881,122905129550802985,
%U 10423661531476766834,957176457621821573987,94608465923392572536421
%N Row 7 of table A113143; equal to INVERT of 7-fold factorials shifted one place right.
%F a(n) = Sum_{j=0..k} 7^(k-j)*A111146(k, j).
%F a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A045754(n-k).
%e A(x) = 1 + x + 2*x^2 + 11*x^3 + 141*x^4 + 2928*x^5 +...
%e = 1/(1 - x - x^2 - 8*x^3 - 120*x^4 -...- A045754(n)*x^(n+1)
%e -...).
%o (PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,7*i+1)));return(polcoeff(A,n,X))}
%Y Cf. A113143, A045754 (7-fold factorials).
%K nonn
%O 0,3
%A _Philippe Deléham_ and _Paul D. Hanna_, Oct 28 2005