login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112845
Recurrence a(n) = a(n-1)^3 - 3*a(n-1) with a(0) = 6.
7
6, 198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
OFFSET
0,1
COMMENTS
Identical to A006243 apart from the initial term. For some general remarks on this recurrence see A001999. - Peter Bala, Nov 13 2012
LINKS
E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977, 629-630.
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
a(n) = -2*cos(3^n*arccos(-3)).
From Peter Bala, Nov 13 2012: (Start)
a(n) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(2).
(End)
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 6}, a, {n,
0, 5}] (* G. C. Greubel, Dec 30 2016 *)
CROSSREFS
Cf. A006243. - R. J. Mathar, Aug 15 2008
Sequence in context: A340557 A373234 A305167 * A373238 A109058 A274481
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 21 2005
STATUS
approved