login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112479
a(n) = 1 + sum{p=primes<n, p does not divide n} a(p).
1
1, 1, 2, 3, 4, 5, 8, 15, 14, 11, 16, 29, 32, 55, 58, 63, 64, 125, 128, 251, 246, 239, 256, 509, 508, 479, 510, 503, 512, 1017, 1024, 2047, 2030, 1983, 2036, 2045, 2048, 3967, 4062, 4091, 4096, 8181, 8192, 16367, 16378, 16127, 16384, 32765, 32760, 32763
OFFSET
1,3
COMMENTS
a(prime(k)) = 2^(k-1). - Ivan Neretin, May 01 2016
LINKS
EXAMPLE
a(9) = 1 + a(2) + a(5) + a(7), since 2, 5 and 7 are the primes < 9 and coprime to 9. So a(9) = 1 + 1 + 4 + 8
= 14.
MATHEMATICA
f[l_] := Block[{n}, n = Length[l] + 1; Return[Append[l, 1 + Plus @@ l[[Select[Range[n - 1], PrimeQ[ # ] && Mod[n, # ] > 0 &]]]]]; ]; Nest[f, {1}, 50] (* Ray Chandler, Dec 26 2005 *)
PROG
(PARI) a(n)=if(n<7, max(n-1, 1), my(s=1); forprime(p=2, n-1, if(n%p, s+=a(p))); s) \\ Charles R Greathouse IV, May 02 2016
CROSSREFS
Sequence in context: A140294 A108014 A075721 * A333264 A247461 A281303
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 13 2005
EXTENSIONS
Extended by Ray Chandler, Dec 26 2005
STATUS
approved