login
Number of connected simple graphs with n vertices, n+4 edges, and vertex degrees no more than 4.
7

%I #14 Jun 05 2023 09:26:44

%S 0,0,0,0,1,8,59,427,2768,16461,90111,460699,2222549,10216607,45076266,

%T 192059940,794088479,3198709835,12593964702,48596474890,184195614359,

%U 687087962550,2526421534903

%N Number of connected simple graphs with n vertices, n+4 edges, and vertex degrees no more than 4.

%H J. B. Hendrickson and C. A. Parks, <a href="https://doi.org/10.1021/ci00001a018">Generation and Enumeration of Carbon skeletons</a>, J. Chem. Inf. Comput. Sci., 31 (1991), 101-107. See Table 2, column 5 on page 103.

%H Michael A. Kappler, <a href="http://www.daylight.com/meetings/emug04/Kappler/GenSmi.html">GENSMI: Exhaustive Enumeration of Simple Graphs</a>.

%o (nauty/bash)

%o for n in {5..15}; do geng -c -D4 ${n} $((n+4)):$((n+4)) -u; done # _Andrey Zabolotskiy_, Nov 24 2017

%Y The analogs for n+k edges with k = -1, 0, ..., 7 are: A000602, A036671, A112410, A112619, A112408, this sequence, A112425, A112426, A112442. Cf. A121941.

%K nonn

%O 1,6

%A _Jonathan Vos Post_, Dec 21 2005

%E Corrected offset and new name from _Andrey Zabolotskiy_, Nov 24 2017

%E a(16)-a(23) added by _Georg Grasegger_, Jun 05 2023