login
A112329
Number of divisors of n if n odd, number of divisors of n/4 if n divisible by 4, otherwise 0.
12
1, 0, 2, 1, 2, 0, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 2, 0, 2, 2, 4, 0, 2, 4, 3, 0, 4, 2, 2, 0, 2, 4, 4, 0, 4, 3, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 6, 3, 0, 4, 2, 2, 0, 4, 4, 4, 0, 2, 4, 2, 0, 6, 5, 4, 0, 2, 2, 4, 0, 2, 6, 2, 0, 6, 2, 4, 0, 2, 6, 5, 0, 2, 4, 4, 0, 4, 4, 2, 0, 4, 2, 4, 0, 4, 8, 2, 0, 6, 3, 2, 0, 2, 4, 8
OFFSET
1,3
COMMENTS
First occurrence of k: 2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, ????, 768, 576, 480, ????, 720, ..., . See A246063. - Robert G. Wilson v, Oct 31 2013
a(n) is the number of pairs (u, v) in NxZ satisfying u^2-v^2=n. See Kühleitner. - Michel Marcus, Jul 30 2017
REFERENCES
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
LINKS
M. Kühleitner, An Omega Theorem on Differences of Two Squares, Acta Mathematica Universitatis Comenianae, Vol. 61, 1 (1992) pp. 117-123. See Lemma 1 p. 2.
John Shareshian and Sheila Sundaram, Ramanujan sums and rectangular power sums, arXiv:2305.12007 [math.CO], 2023. Mentions this sequence.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Multiplicative with a(2^e) = e-1 if e>0, a(p^e) = 1+e if p>2.
G.f.: Sum_{k>0} x^k / (1 - (-x)^k) = Sum_{k>0} -(-x)^k / (1 + (-x)^k).
Möbius transform is period 4 sequence [ 1, -1, 1, 1, ...].
G.f.: Sum_{k>=1} x^(k^2) * (1+x^(2*k))/(1-x^(2*k)). - Joerg Arndt, Nov 08 2010
a(4*n + 2) = 0. a(n) = -(-1)^n * A048272(n). a(2*n - 1) = A099774(n). a(4*n) = A000005(n). a(4*n + 1) = A000005(4*n + 1). a(4*n - 1) = 2 * A078703(n).
a(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
Bisection: a(2*k-1) = A000005(2*k-1), a(2*k) = A183063(2*k) - A001227(2*k), k >= 1. See the Hardy reference, p. 142 where a(n) = sigma^*_0(n). - Wolfdieter Lang, Jan 07 2017
a(n) = d(n) - 2*d(n/2) + 2*d(n/4) where d(n) = 0 if n is not an integer. See Kühleitner.
a(n) = Sum_{d|n} [(d mod 2) = (n/d mod 2)], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Mar 21 2022
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 + 2^(1-2*s) - 2^(1-s)).
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (2*gamma-1)*n/2, where gamma is Euler's constant (A001620). (End)
a(n) = (-1)^n * Sum_{d|2*n} cos(d*Pi/2). - Ridouane Oudra, Sep 27 2024
EXAMPLE
x + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 3*x^9 + 2*x^11 + 2*x^12 + ...
MAPLE
f:= proc(n) if n::odd then numtheory:-tau(n) elif n mod 4 = 0 then numtheory:-tau(n/4) else 0 fi end proc;
seq(f(i), i=1..100); # Robert Israel, Aug 24 2014
MATHEMATICA
Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
Table[If[OddQ[n], DivisorSigma[0, n], If[OddQ[n/2], 0, DivisorSigma[0, n/4]]], {n, 100} ] (* Ray Chandler, Aug 23 2014 *)
PROG
(PARI) {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d))}
(PARI) {a(n) = if( n<1, 0, if( n%2, numdiv(n), if( n%4, 0, numdiv(n/4))))} /* Michael Somos, Sep 02 2006 */
(PARI) d(n) = if (denominator(n)==1, numdiv(n), 0);
a(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4); \\ Michel Marcus, Jul 30 2017
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Sep 04 2005
STATUS
approved