login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111993
Fifth convolution of Schroeder's (second problem) numbers A001003(n), n>=0.
1
1, 5, 25, 125, 630, 3206, 16470, 85350, 445775, 2344595, 12408903, 66042795, 353259900, 1898119100, 10240583420, 55454182716, 301307002605, 1642192132625, 8975693643525, 49186242980105, 270186765784210
OFFSET
0,2
LINKS
FORMULA
G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^5.
a(n)= (5/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+4,k-1), a(0)=1.
a(n) = 5*hypergeom([1-n, n+6], [2], -1), n>=1, a(0)=1.
Recurrence: n*(n+5)*a(n) = n*(7*n+23)*a(n-1) - (n+2)*(7*n-9)*a(n-2) + (n-3)*(n+2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5*sqrt(3*sqrt(2)-4)*(17-12*sqrt(2)) * (3+2*sqrt(2))^(n+5)/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
PROG
(PARI) x='x+O('x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^5) \\ G. C. Greubel, Mar 16 2017
CROSSREFS
Cf. Fifth column of convolution triangle A011117. Fourth convolution: A010849.
Sequence in context: A097680 A069030 A373281 * A341266 A113996 A340538
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved