login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111335
Let qf(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is qf(q^3,q^4)/qf(q,q^4).
4
1, 1, 1, 0, 0, 1, 1, 0, -1, 0, 2, 1, -1, -1, 1, 2, -1, -2, 1, 3, 1, -3, -1, 3, 1, -3, -2, 4, 4, -3, -4, 3, 5, -3, -7, 2, 9, 0, -9, -1, 10, 3, -11, -5, 12, 8, -11, -10, 10, 12, -11, -15, 11, 19, -7, -21, 6, 24, -5, -28, 1, 31, 4, -33, -8, 36, 12, -38, -18, 40, 27, -40, -33, 40, 39, -40, -49, 38, 60, -34, -67, 30, 75, -25, -87, 18, 98
OFFSET
0,11
LINKS
FORMULA
Euler transform of period 4 sequence [1, 0, -1, 0, ...]. - Michael Somos, Nov 10 2005
G.f.: Product_{k>0} (1-x^(2k-1))^((-1)^k). - Michael Somos, Nov 11 2005
G.f.: exp( Sum_{k >= 1} 1/(k*(x^k + x^(-k))) ). - Peter Bala, Sep 28 2023
MAPLE
# Uses EulerTransform from A358369.
a := EulerTransform(BinaryRecurrenceSequence(0, -1)):
seq(a(n), n=0..86); # Peter Luschny, Nov 17 2022
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=0, n\2, (1-x^(2*k+1))^(-(-1)^k), 1+x*O(x^n)), n))} /* Michael Somos, Nov 11 2005 */
(Sage) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, -1)
a = EulerTransform(b)
print([a(n) for n in range(87)]) # Peter Luschny, Nov 17 2022
CROSSREFS
Cf. A111330.
Sequence in context: A337006 A025892 A025883 * A345238 A242442 A163768
KEYWORD
sign,look
AUTHOR
N. J. A. Sloane, Nov 09 2005
STATUS
approved