login
A111216
a(n) = 31*a(n-1)-a(n-2).
3
1, 30, 929, 28769, 890910, 27589441, 854381761, 26458245150, 819351217889, 25373429509409, 785756963573790, 24333092441278081, 753540108716046721, 23335410277756170270, 722644178501725231649, 22378634123275726010849, 693015013643045781104670
OFFSET
0,2
COMMENTS
Take 31 numbers consisting of 29 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 31 times their product. (Guy)
Positive values of x (or y) satisfying x^2 - 31xy + y^2 + 29 = 0. - Colin Barker, Feb 24 2014
FORMULA
G.f.: (1-x)/(1-31*x+x^2). [Philippe Deléham, Nov 18 2008]
a(n) = A200442(n) - A200442(n-1). - R. J. Mathar, Feb 13 2016
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 31 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
PROG
(PARI) Vec((1-x)/(1-31*x+x^2) + O(x^100)) \\ Colin Barker, Feb 24 2014
(Magma) I:=[1, 30]; [n le 2 select I[n] else 31*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2014
CROSSREFS
Cf. A049685.
Cf. similar sequences listed in A238379.
Sequence in context: A041421 A042742 A144350 * A158672 A268948 A276396
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, following a suggestion from R. K. Guy, Oct 26 2005
STATUS
approved