login
A111107
Lexicographically smallest sequence of distinct primes whose binomial transform consists only of primes.
0
2, 3, 5, 11, 13, 29, 43, 53, 59, 71, 79, 83, 103, 113, 139, 173, 181, 227, 269, 277, 317, 383, 463, 509, 673, 701, 751, 863, 967, 977, 1187, 1201, 1493, 1531, 1609, 1637, 1801, 2153, 2221, 2239, 2371, 2377, 2543, 2557, 2683
OFFSET
1,1
COMMENTS
In the standard binomial transform of the primes most of the terms are composite.
FORMULA
Sum of right diagonal (end number of each delta row) of transform + next prime of the above sequence creates the next transform prime.
EXAMPLE
This is the binomial transform of the sequence: 2, 5, 13, 37, 101, 271, 727, 1931, 5003, 12547, 30449, 71761, 165037, 372149, 826303, 1813219, 3944921, 8533073, 18393821, 39588071, 85192381, 183479291, 395667617, 854417989, 1847225579, 3996807053, 8650687127, 18721431499, 40496966207, 87538925959, 189076973699, 408090258677, 880275573349, 1898072186453, 4091892797737, 8820984877351, 19015949525137, 40992990314189, 88355012668999, 190364989602967, 409882270030033, 881700809985239, 1894318010182909, 4063965944848079, 8704271352438569, ...
The prime 7 and various larger primes are missing from the new sequence because the transform would not consist of primes. For example,
2,5,13,33
3,8,20
5,12
7
and 33 is not prime, so we must eliminate 7.
CROSSREFS
Cf. A007443.
Sequence in context: A131741 A277098 A096650 * A186641 A215354 A129201
KEYWORD
easy,nonn
AUTHOR
Daniel Joyce, Oct 14 2005
STATUS
approved