login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: square root of weight enumerator of [128,8,64] Reed-Muller code RM(1,7).
0

%I #15 May 11 2020 05:43:24

%S 1,127,-8064,1024128,-162578304,28906012800,-5506514149248,

%T 1098926377492608,-226787489583693696,48002619344296837248,

%U -10363606765190978576256,2273363554859188811800704,-505247277362380820188774272,113523427964612752606407049344,-25745094719113893095451450367872

%N G.f.: square root of weight enumerator of [128,8,64] Reed-Muller code RM(1,7).

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%F a(n) = (LegendreP(n,-127)+127*LegendreP(n-1,-127))/(1-n) for n>1 (guessed formula). - _Mark van Hoeij_, Apr 23 2010

%o (PARI) a(n) = if(n>1, (pollegendre(n,-127) + 127*pollegendre(n-1,-127))/(1-n), 126*n+1) \\ _Charles R Greathouse IV_, Mar 19 2017

%Y Cf. A110827.

%K sign

%O 0,2

%A _N. J. A. Sloane_ and _Nadia Heninger_ Aug 18 2005