OFFSET
0,3
COMMENTS
Second column of number triangle A110608.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
FORMULA
G.f.: -(2*x*(2*x+2*sqrt(1-4*x)-3) - sqrt(1-4*x) + 1)/(2*sqrt((1 - 4*x)^3)*x). - Marco A. Cisneros Guevara, Jul 23 2011; amended by Georg Fischer, Apr 09 2020
(n+1)*(10*n-7)*a(n)+2*n*(5*n-88)*a(n-1) -4*(25*n-22)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 07 2012
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f.: x*(BesselI(0,2*x) + 2*BesselI(1,2*x) + BesselI(2,2*x))*exp(2*x).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} 1/a(n) = Pi*(2*sqrt(3) + Pi)/18 = 1.152911143694148... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/sqrt(5))*log(phi) + 2*log(phi)^2, where log(phi) = A002390. - Amiram Eldar, Feb 20 2021
MAPLE
with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Composition(n*2+1), size=n)), j=1..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 09 2007
a:=n->sum(sum(binomial(2*n, n)/(n+1), j=1..n), k=1..n): seq(a(n), n=0..22); # Zerinvary Lajos, May 09 2007
MATHEMATICA
Table[CatalanNumber[n]*n^2, {n, 0, 22}] (* Zerinvary Lajos, Jul 08 2009 *)
CoefficientList[Series[x (1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2)) / 2, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)
PROG
(Magma) [0] cat [((4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2))/2: n in [0..25]]; // Vincenzo Librandi, Jan 09 2015
(PARI) for(n=0, 25, print1(n*binomial(2*n, n-1), ", ")) \\ G. C. Greubel, Sep 01 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 30 2005
STATUS
approved