login
A110527
a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 0, a(1) = 1, a(2) = 8.
3
0, 1, 8, 29, 128, 537, 2280, 9653, 40896, 173233, 733832, 3108557, 13168064, 55780809, 236291304, 1000946021, 4240075392, 17961247585, 76085065736, 322301510525, 1365291107840, 5783465941881, 24499154875368
OFFSET
0,3
COMMENTS
A048878(n) = a(n) + a(n+1). Compare with A110526.
FORMULA
G.f.: -x*(1+5*x)/((1+x)*(x^2+4*x-1)).
a(n) = (-1)^n + 3*A001076(n) - A015448(n). - Ehren Metcalfe, Nov 18 2017
a(n) = (-1)^n + 2*A110526(n) + A110679(n-2) for n >= 2. - Yomna Bakr and Greg Dresden, May 25 2024
MAPLE
seriestolist(series(-x*(1+5*x)/((1+x)*(x^2+4*x-1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')], apart from initial term.
MATHEMATICA
LinearRecurrence[{3, 5, 1}, {0, 1, 8}, 30] (* Harvey P. Dale, Feb 12 2015 *)
PROG
(PARI) x='x+O('x^50); concat(0, Vec(-x*(1+5*x)/((1+x)*(x^2+4*x-1)))) \\ G. C. Greubel, Aug 30 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 24 2005
STATUS
approved