OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Number triangle T(0,k) = 0^k, T(n,k) = Sum_{j=0..n} j*C(2n-j-1, n-j)* C(j, k)3^(n-j)/n, n > 0, k > 0. Deleham triangle Delta(0^n, 3-2*0^n) [see construction in A084938].
EXAMPLE
Rows begin
1;
1, 1;
4, 5, 1;
25, 33, 9, 1;
190, 256, 78, 13, 1;
1606, 2186, 703, 139, 17, 1;
MATHEMATICA
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := Sum[j*3^(n - j)*Binomial[2*n - j - 1, n - j]*Binomial[j, k]/n, {j, 0, n}]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten ( G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) concat([1], for(n=1, 10, for(k=0, n, print1(sum(j=0, n, j*binomial(2*n-j-1, n-j)*binomial(j, k)*3^(n-j)/n), ", ")))) \\ G. C. Greubel, Aug 29 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved