login
A110078
a(n) is number of solutions of the equation sigma(x)=10^n.
4
1, 0, 0, 0, 2, 4, 7, 9, 15, 23, 36, 53, 85, 124, 202, 289, 425, 603, 864, 1209, 1699, 2397, 3386, 4665, 6440, 8801, 12101, 16338, 22078, 29565, 39557, 52615, 69823, 92338, 121622, 159435, 208513, 271775, 353436, 457759, 591191, 760763, 976412, 1250011, 1596723, 2034474, 2585159, 3277192, 4145341, 5232888, 6591553
OFFSET
0,5
COMMENTS
Conjecture: For n>2, a(n+1)>a(n).
LINKS
Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2
FORMULA
a(n) = coefficient of x^n*y^n in Prod_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = sigma(p^k) for some nonnegative integer k. - Max Alekseyev, Aug 08 2005
EXAMPLE
a(4)=2 because 8743 & 9481 are all solutions of the equation sigma(x)=10^4.
PROG
(PARI) { a(d) = local(X, Y, P, L, n, f, p, m, l); X=Pol([1, 0], x); Y=Pol([1, 0], y); P=Set(); L=listcreate(10000); for(i=0, d, for(j=0, d, n=2^i*5^j; if(n==1, next); f=factorint(n-1)[, 1]; for(k=1, length(f), p=f[k]; m=n*(p-1)+1; while(m%p==0, m\=p); if(m==1, l=setsearch(P, p); if(l==0, l=setsearch(P, p, 1); P=setunion(P, [p]); listinsert(L, 1, l)); L[l]+=X^i*Y^j ) ) )); R=1+O(x^(d+1))+O(y^(d+1)); for(l=1, length(L), R*=L[l]); listkill(L); vector(d+1, n, polcoeff(polcoeff(R, n-1), n-1)) } (Alekseyev)
CROSSREFS
Sequence in context: A278977 A097433 A308758 * A257064 A085800 A155190
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Aug 01 2005
EXTENSIONS
More terms from Max Alekseyev, Aug 08 2005
Terms a(44) onward from Max Alekseyev, Mar 04 2014
STATUS
approved