OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-10,-4,8).
FORMULA
From Colin Barker, May 01 2019: (Start)
a(n) = (-3/7 + 2^(-1+n) - ((-4+sqrt(2))*(2*(1+sqrt(2)))^n + (2-2*sqrt(2))^n*(4+sqrt(2))) / (28*sqrt(2))).
a(n) = 7*a(n-1) - 10*a(n-2) - 4*a(n-3) + 8*a(n-4) for n>3.
(End)
MAPLE
seriestolist(series(x*(-1+4*x)/((x-1)*(2*x-1)*(4*x^2+4*x-1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2basekrokseq:[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; RokType: Y[15] = Y[15] + 1/2
PROG
(PARI) concat(0, Vec(x*(1 - 4*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x - 4*x^2)) + O(x^30))) \\ Colin Barker, May 01 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 10 2005
STATUS
approved