OFFSET
0,13
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: 1/Product_{j>=0} (1 - x^(2+5j)). - Emeric Deutsch, Feb 15 2006
a(n) ~ Gamma(2/5) * exp(Pi*sqrt(2*n/15)) / (2^(17/10) * 3^(1/5) * 5^(3/10)*Pi^(3/5) * n^(7/10)) * (1 + (11*Pi/(120*sqrt(30)) - 7*sqrt(3/10)/(5*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284280(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 24 2017
EXAMPLE
a(12)=2 since 12 = 12 = 2+2+2+2+2+2.
MAPLE
g:=1/product(1-x^(2+5*i), i=0..20): gser:=series(g, x=0, 86): seq(coeff(gser, x, n), n=0..82); # Emeric Deutsch, Feb 15 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+2)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
PROG
(PARI) Vec(prod(k=0, 100, 1/(1 - x^(5*k + 2))) + O(x^111)) \\ Indranil Ghosh, Mar 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 15 2006
STATUS
approved