login
A109627
Numbers n such that concatenation of n and its 10's complement is a palindromic prime.
1
91, 9091, 9271, 9451, 900991, 907291, 914581, 917281, 920971, 931861, 939061, 943651, 954541, 958141, 960931, 972721, 975421, 977221, 978121, 982711, 90027991, 90209791, 90272791, 90372691, 90381691, 90627391, 90745291
OFFSET
1,1
COMMENTS
The Mathematica code can be modified to verify that the included list is a complete listing of the sequence such that a(n) < 100000000. - Keith Schneider (schneidk(AT)unc.edu), May 20 2007, May 21 2007
LINKS
Keith Schneider (schneidk(AT)unc.edu), May 20 2007, Table of n, a(n) for n = 1..108
EXAMPLE
a(3)=9271 because 10^4-9271 = 729 and concatenating produces the palprime 9271729.
MATHEMATICA
Mathematica code from Keith Schneider, May 21 2007:
Remove[PalList, PrimeList, SeqList]
PalList[n_] := PalList[n] = Table[FromDigits[Join[Join[{9},
PadLeft[IntegerDigits[i], n/2 - 1], Reverse[ PadLeft[IntegerDigits[ 10^(n/2 - 1) - 1 - i], n/2 - 1]], {1}], Reverse[Join[{9}, PadLeft[IntegerDigits[i], n/2 - 1], Reverse[ PadLeft[IntegerDigits[10^(n/2 - 1) - 1 - i], n/2 - 1]]]]]], { i, 0, 10^(n/2 - 1) - 10^(n/2 - 2) - 1}];
PrimeList[n_] := PrimeList[n] = Delete[Union[Table[If[ PrimeQ[PalList[n][[ i]]], PalList[n][[i]]], {i, 1, Length[PalList[n]]}]], -1];
SeqList[2] = {91};
SeqList[n_] := SeqList[n] = Table[FromDigits[IntegerDigits[ PrimeList[n][[i]]][[Range[n]]]], {i, 1, Length[PrimeList[n]]}];
TheList = Join[SeqList[2], SeqList[4], SeqList[6], SeqList[8],
SeqList[10], SeqList[12], SeqList[14]]; TheList // TableForm
Length[TheList]
CROSSREFS
Sequence in context: A202564 A006244 A054216 * A095372 A165154 A015261
KEYWORD
base,nonn
AUTHOR
Jason Earls, Aug 02 2005
EXTENSIONS
More terms from Keith Schneider (schneidk(AT)unc.edu), May 20 2007, May 21 2007
STATUS
approved