login
A109621
Numbers n such that the numerator of Sum_{k=0..n} 1/k!, in reduced form, is prime.
0
1, 2, 5, 9, 24, 32, 321, 343, 352, 511, 685, 807, 966, 1079, 1274, 1381, 2016, 3226, 8130
OFFSET
1,2
COMMENTS
Terms through 807 correspond to certified primes.
If it exists, a(20) > 14304. - J.W.L. (Jan) Eerland, Sep 13 2022
EXAMPLE
Sum_{k=0..9} 1/k! = 98641/36288 and 98641 is prime, so 9 is in the sequence.
MATHEMATICA
s = 0; Do[s += 1/n!; k = Numerator[s]; If[PrimeQ[k], Print[n]], {n, 0, 3300}]
Flatten[Position[Accumulate[1/Range[0, 3230]!], _?(PrimeQ[ Numerator[ #]]&)]] -1 (* Harvey P. Dale, Sep 25 2019 *)
n=0; Monitor[Parallelize[While[True, If[PrimeQ[Numerator[Sum[1/Factorial[k], {k, 0, n}]]], Print[n]]; n++]; n], n] (* J.W.L. (Jan) Eerland, Sep 13 2022 *)
CROSSREFS
Cf. A061354.
Sequence in context: A192477 A288109 A047044 * A075200 A075198 A294633
KEYWORD
nonn,hard,more
AUTHOR
Ryan Propper, Aug 01 2005
EXTENSIONS
a(19) from J.W.L. (Jan) Eerland, Sep 13 2022
STATUS
approved