login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109519
a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,-1;n-1,n-1].
2
-1, -1, -2, -9, -80, -1000, -15336, -276115, -5705728, -133155495, -3464900000, -99490865760, -3125217447936, -106614813012877, -3925516139359360, -155164259295703125, -6553564019985219584, -294562012662334323872, -14038370700094085018112
OFFSET
1,3
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
FORMULA
From Seiichi Manyama, Feb 28 2021: (Start)
a(n+1) = [x^n] 1/(-1 + n*x - n*x^2).
a(n+1) = (-1)^(n+1) * Sum_{k=0..n} (-n)^k * binomial(k,n-k).
a(n+1) = (-1) * sqrt(n)^n * S(n, sqrt(n)) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind. (End)
EXAMPLE
a(4)=-9 because if M is the 2 X 2 matrix [0,-1;3,3], then M^4 is the 2 X 2 matrix [ -18,-9,27,9].
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, -1, n-1, n-1]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..21);
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, -1}, {n - 1, (n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[Abs[M[n][[1, 2]]], {n, 1, 50}]
PROG
(Sage) [ -lucas_number1(n+1, n, n) for n in range(0, 19)] # Zerinvary Lajos, Jul 16 2008
(PARI) a(n) = round(-sqrt(n-1)^(n-1)*polchebyshev(n-1, 2, sqrt(n-1)/2)); \\ Seiichi Manyama, Feb 28 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved