login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109518
a(n)=the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,3(n-1)].
1
1, 3, 38, 783, 22480, 828000, 37231704, 1977187485, 121098539008, 8403438270285, 651608685100000, 55835951178466800, 5239593453691293696, 534383614812622168191, 58857325474654519917440
OFFSET
1,2
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
EXAMPLE
a(4)=783 because if M is the 2 X 2 matrix [0,1;3,9], then M^4 is the 2 X 2 matrix [252,783,2349,7299].
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, 1, n-1, 3*(n-1)]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..18);
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, 3*(n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]
CROSSREFS
Sequence in context: A033678 A228697 A072331 * A300631 A300627 A158119
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved