login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109517
a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,2(n-1)].
3
1, 2, 18, 252, 4880, 120750, 3639384, 129365880, 5298720768, 245738908890, 12728860100000, 728372947109940, 45631105330876416, 3106354479972026374, 228329428483544787840, 18022862954171193750000, 1520481402538463932186624, 136531862779634547726146994
OFFSET
1,2
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
LINKS
FORMULA
For n > 1, a(n) = ((n - 1 + sqrt(n*(n - 1)))^n - (n - 1 - sqrt(n*(n - 1)))^n)/(2*sqrt(n*(n - 1))). - Robert Israel, Oct 19 2021
EXAMPLE
a(4)=252 because if M is the 2 X 2 matrix [0,1;3,6], then M^4 is the 2 X 2 matrix [117,252;756;1629].
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, 1, n-1, 2*(n-1)]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..19);
# second Maple program:
a:= n-> (<<0|1>, <n-1|2*n-2>>^n)[1, 2]:
seq(a(n), n=1..18); # Alois P. Heinz, Oct 19 2021
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, 2*(n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]
CROSSREFS
Sequence in context: A368466 A337775 A276364 * A213643 A143138 A151362
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved