login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.
14

%I #38 Jan 29 2024 01:20:32

%S 1,-1,-2,3,1,2,-6,-5,7,-1,12,-6,-12,6,-2,11,-16,-7,20,3,12,-12,-22,10,

%T 1,12,-20,-18,30,2,32,-21,-24,16,-6,21,-36,-20,24,-5,42,-12,-42,36,7,

%U 22,-46,-22,43,-1,32,-36,-52,20,12,30,-40,-30,60,-6,62,-32,-42,43,-12,24,-66,-48,44,6,72,-35,-72,36,-2,60,-72

%N Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.

%H Seiichi Manyama, <a href="/A109091/b109091.txt">Table of n, a(n) for n = 1..10000</a>

%H G. N. Watson, <a href="http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002174499&amp;physid=phys107#navi">Ramanujans Vermutung über Zerfällungsanzahlen</a>, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. This is the expression B^5/C in the notation of p. 106. [Added by _N. J. A. Sloane_, Nov 13 2009]

%F G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.

%F -5*a(n) = A109064(n) unless n = 0.

%F a(n) = A284097(n) + A284103(n) - A284280(n) - A284281(n) = A284150(n) - A284152(n). - _Seiichi Manyama_, Apr 01 2017

%F L.g.f.: -log(1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))))) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, May 10 2017

%F Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(15*sqrt(5)) = 0.294254... . - _Amiram Eldar_, Jan 29 2024

%e G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...

%t a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* _Michael Somos_, Apr 26 2015 *)

%t a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* _Michael Somos_, Apr 26 2015 *)

%o (PARI) {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* _Michael Somos_, Mar 21 2008 */

%o (Ruby)

%o def s(k, m, n)

%o s = 0

%o (1..n).each{|i| s += i if n % i == 0 && i % k == m}

%o s

%o end

%o def A109091(n)

%o (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}

%o end # _Seiichi Manyama_, Apr 01 2017

%Y Cf. A003823, A007325, A078905, A109064, A229793.

%Y Cf. A284097, A284103, A284150, A284152, A284280, A284281.

%K sign,mult

%O 1,3

%A _Michael Somos_, Jun 18 2005