login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108768
Primes that appear in the sequence p:=x^2+x+1, sieved with a quadratic sieve construction.
1
3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 31, 37, 757, 271, 67, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907
OFFSET
1,1
COMMENTS
This sequence appears in a website available on web.archive (see Quadratic Sieve Construction link). There is a single appearance of the first term 3, while all other primes appear twice. See A256148 for a version of the sequence consistent with the current version of the website where each prime appears only once. - Ray Chandler, Jul 05 2015
PROG
(MuPAD) // from Quadratic Sieve Construction link.
liste_max:=10000;
for x from 1 to liste_max do
liste_x[x]:=x^2+x+1;
liste_prim[x]:=1;
end_for;
x:=1;
while (x<liste_max) do
stelle:=x;
p:=liste_x[x];
if (p>1) then
print ("Prim ", p, "x = ", x, isprime (p)) ;
// Aussiebung
while (stelle<liste_max) do
erg:=liste_x[stelle];
while (erg mod p = 0) do
erg:=erg /p;
end_while;
liste_x[stelle]:=erg;
liste_prim[stelle]:=0;
// print ("x= ", stelle, erg, p);
stelle:=stelle+p;
end_while;
end_if;
x:=x+1;
end_while;
// Ray Chandler, Jul 05 2015
CROSSREFS
KEYWORD
nonn,uned,obsc
AUTHOR
Bernhard Helmes (pi(AT)devalco.de), Jun 24 2005
STATUS
approved