login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108627
Logarithmic g.f.: Sum_{n>=1} a(n)/n*x^n = log(G108626(x)), where G108626(x) is g.f. for A108626.
1
2, 6, 20, 66, 222, 750, 2536, 8578, 29018, 98166, 332092, 1123458, 3800630, 12857438, 43496400, 147147266, 497795634, 1684030566, 5697034596, 19272929986, 65199855118, 220569529934, 746181374904, 2524313509762
OFFSET
1,1
COMMENTS
A108626 forms the antidiagonal sums of square array A108625, in which row n equals the crystal ball sequence for A_n lattice.
FORMULA
G.f.: A(x) = 2*x*(1 - x - x^3)/(1 - 4*x + 2*x^2 + x^4).
PROG
(PARI) a(n)=polcoeff(2*x*(1-x-x^3)/(1-4*x+2*x^2+x^4+x*O(x^n)), n)
(PARI) /* Logarithm of g.f. of A108626: */ a(n)=n*polcoeff(log(sum(k=0, n, sum(j=0, k, sum(i=0, j, binomial(k-j, i)^2*binomial(k-i, j-i)))*x^k)+x*O(x^n)), n)
CROSSREFS
Sequence in context: A052991 A246019 A226510 * A193234 A285197 A372872
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 13 2005
STATUS
approved