login
A108566
a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, for n>4: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5)], where SORT places digits in ascending order and deletes 0's.
3
0, 1, 1, 2, 4, 8, 16, 23, 45, 89, 158, 339, 67, 127, 258, 138, 178, 117, 588, 146, 1245, 1224, 3489, 689, 1378, 1178, 239, 1789, 2678, 1579, 1488, 1589, 2369, 11249, 2259, 2335, 12289, 239, 347, 12788, 2357, 3355, 13357, 23344, 45558, 1579, 5589
OFFSET
0,4
COMMENTS
Extended by T. D. Noe, who also found that verified that the maximum is attained at a(48968063)=12336789999. The periodic part of the sequence begins with a(4847516) and has length 156501072. So the maximum is in the periodic part. Primes include: a(3) = 2, a(7) = 23, a(9) = 89, a(12) = 67, a(13) = 127, a(27) = 1789, a(29) = 1579, a(36) = 12289, a(37) = a(26) = 239, a(38) = 347, a(40) = 2357, a(45) = 1579, a(58) = 25579, a(59) = 23459. Semiprimes include: a(4) = 4 = 2^2, a(10) = 158 = 2 * 79, a(11) = 339 = 3 * 113, a(16) = 178 = 2 * 89, a(19) = 146 = 2 * 73, a(22) = 3489 = 3 * 1163, a(23) = 689 = 13 * 53, a(31) = 1589 = 7 * 227, a(32) = 2369 = 23 * 103, a(33) = 11249 = 7 * 1607, a(35) = 2335 = 5 * 467, a(47) = 22789 = 13 * 1753, a(50) = 178999 = 19 * 9421, a(54) = 14567 = 7 * 2081, a(55) = 23469 = 3 * 7823, a(57) = 22467 = 3 * 7489, a(60) = 12499 = 29 * 431, a(63) = 1477 = 7 * 211, a(66) = 799 = 17 * 47.
LINKS
Richard I. Hess, Problem 920: sorted Fibonacci sequence, Pi Mu Epsilon Journal, Vol. 10 (Fall 1998) No. 9, pp. 754-755.
FORMULA
Sorted hexanacci numbers, a.k.a. sorted Fibonacci 6-step sequence.
EXAMPLE
a(7) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
MATHEMATICA
nxt[{a_, b_, c_, d_, e_, f_}]:={b, c, d, e, f, FromDigits[Sort[IntegerDigits[Total[{a, b, c, d, e, f}]]]]}; NestList[nxt, {0, 1, 1, 2, 4, 8}, 50][[All, 1]] (* Harvey P. Dale, May 05 2022 *)
CROSSREFS
Cf. A001592, A069638, A107281, A108564, A108565, 108567-108573.
Sequence in context: A004620 A018618 A294364 * A371880 A057615 A018416
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Jun 10 2005
STATUS
approved