login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108325
"Binary prime squares": values of k for which k^2, expressed in base two and read as a decimal number, is a prime.
4
29, 39, 51, 53, 67, 85, 87, 107, 135, 181, 189, 235, 253, 297, 351, 375, 379, 445, 449, 493, 583, 599, 613, 701, 715, 725, 739, 749, 769, 781, 831, 841, 847, 853, 921, 953, 1007, 1093, 1273, 1339, 1443, 1511, 1543, 1569, 1575, 1587, 1619, 1681, 1697, 1705
OFFSET
1,1
LINKS
EXAMPLE
a(3)=51 because 51^2 = 2601 is the third perfect square whose binary representation 101000101001 read as the decimal one 101000101001 is prime.
MAPLE
a:=proc(n) if isprime(convert(n^2, binary))=true then n else fi end: seq(a(n), n=1..2400); # Emeric Deutsch, Jul 04 2005
MATHEMATICA
Select[Range[1800], PrimeQ[FromDigits[IntegerDigits[#^2, 2]]]&] (* Harvey P. Dale, May 23 2021 *)
PROG
(PARI) isok(n) = isprime(fromdigits(binary(n^2))); \\ Michel Marcus, Sep 24 2018
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Alexandre Wajnberg, Jun 30 2005
EXTENSIONS
More terms from Emeric Deutsch, Jul 04 2005
STATUS
approved