login
A108243
a(n) = number of 3-regular (trivalent) multi-graphs without loops on 2n vertices; a(n) = number of symmetric 2n X 2n matrices with {0,1,2,3}-entries with row sum equal to 3 for each row and trace 0.
6
1, 1, 10, 760, 190050, 103050570, 102359800620, 168076482974400, 424343374430075100, 1560473478516337885500, 8014685021084051980870200, 55595731825871742484530751200, 506777617936508379069463525671000, 5933390819918520195635187162608235000, 87521940468361373047495526366554342050000
OFFSET
0,3
LINKS
FORMULA
Linear differential equation satisfied by exponential generating function: {D(F)(0) = 1, (41580*t^5-3780*t^4+120*t^2+33*t-3)*F(t) + (498960*t^6-162540*t^5-11340*t^4+3+1350*t^3-60*t+132*t^2)*(d/dt)F(t) + (831600*t^7-466200*t^6-30240*t^5+7410*t^4+44*t^3-81*t^2)*(d^2/dt^2)F(t) + (443520*t^8-352800*t^7-18144*t^6+7372*t^5-18*t^3)*(d^3/dt^3)F(t) + (95040*t^9-97920*t^8-3456*t^7+1992*t^6)*(d^4/dt^4)F(t) + (8448*t^10-10688*t^9-192*t^8+144*t^7)*(d^5/dt^5)F(t) + (256*t^11-384*t^10)*(d^6/dt^6)F(t),
with F(0) = 1, `@@`(D, 5)(F)(0) = 103050570, `@@`(D, 2)(F)(0) = 10, `@@`(D, 3)(F)(0) = 760, `@@`(D, 4)(F)(0) = 190050}
Linear recurrence satisfied by a(n): {(4989600 + 5718768*n^7 + 1045440*n^8 + 123200*n^9 + 8448*n^10 + 256*n^11 + 30135960*n + 75458988*n^2 + 105258076*n^3 + 91991460*n^4 + 53358140*n^5 + 21100464*n^6)*a(n) + (-19958400 - 1534368*n^7 - 182592*n^8 - 12608*n^9 - 384*n^10 - 75637440*n - 125414712*n^2 - 119890252*n^3 - 73239888*n^4 - 29906772*n^5 - 8276184*n^6)*a(n + 1) + (-4989600 - 5760*n^7 - 192*n^8 - 11840760*n - 12084468*n^2 - 6932520*n^3 - 2446668*n^4 - 544320*n^5 - 74592*n^6)*a(n + 2) + (1857240 + 144*n^7 + 3447358*n + 2724762*n^2 + 1186966*n^3 + 307470*n^4 + 47332*n^5 + 4008*n^6)*a(n + 3) + (5445 + 3289*n + 660*n^2 + 44*n^3)*a(n + 4) + (-3003 - 1635*n - 297*n^2 - 18*n^3)*a(n + 5) + 3*a(n + 6),
with a(0) = 1, a(1) = 1, a(2) = 10, a(3) = 760, a(4) = 190050, a(5) = 103050570}
a(n) ~ 2^(n + 1/2) * 3^n * n^(3*n) / exp(3*n). - Vaclav Kotesovec, Oct 24 2023
EXAMPLE
a(1)=1 is the graph on 1, 2 with three copies of the edge (1,2).
a(2)=10 are relabelings of the graphs on 1,2,3,4:
K_4 x 1
+ {(1,2), (1,2), (1,3), (3,4), (3,4), (2,4)} x 6 relabelings
+ {(1,2), (1,2), (1,2), (3,4), (3,4), (3,4)} x 3 relabelings.
CROSSREFS
Even bisection of column k=3 of A333351.
Sequence in context: A030979 A183288 A108247 * A323494 A159709 A222689
KEYWORD
nonn
AUTHOR
Marni Mishna, Jun 17 2005
EXTENSIONS
Definition corrected by Brendan McKay, Apr 02 2007
Terms a(13) and beyond from Andrew Howroyd, Mar 25 2020
STATUS
approved