login
A108071
Number of inner dual graphs of planar polyhexes with n hexagons.
2
1, 1, 2, 4, 8, 21, 53, 151, 458, 1477, 4918, 16956, 59494, 212364, 766753, 2796876, 10284793, 38096072, 141998218, 532301941, 2005638293, 7592441954, 28865031086, 110174528925, 422064799013, 1622379252093
OFFSET
1,3
LINKS
Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A constructive enumeration of fusenes and benzenoids, Journal of Algorithms, Volume 45, Issue 2, November 2002, Pages 155-166.
Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons, J. Chem. Inf. Comput. Sci. 2003, 43, 3, 842-851.
EXAMPLE
For n = 4, the a(n) = 4 graphs are: the 4-path, which is the inner dual of 4 polyhexes out of A018190(4) = 7 (each of the others is an inner dual of a single polyhex); the paw graph; the diamond graph; the claw graph.
CROSSREFS
KEYWORD
nonn
AUTHOR
Gunnar Brinkmann, Jun 05 2005
EXTENSIONS
Name corrected by Andrey Zabolotskiy, Oct 01 2022
STATUS
approved