OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
T(n,k) is the number of Dyck (n+3)-paths with 3 peaks (UDs) and last descent of length k+1. For example, T(1,1)=3 counts UUDUDUDD, UDUUDUDD, UDUDUUDD. The number of Dyck n-paths containing k peaks and with last descent of length j is (j/n)*binomial(n,k-1)*binomial(n-j-1,k-2) (where as usual binomial(a,b)=0 for b < 0 except that binomial(-1,-1):=1). - David Callan, Jun 26 2006
As a rectangular array, this is the accumulation array (cf. A144112) of the rectangular array W given by w(i,j)=i+j-1; i.e., W=A002024 as a rectangular array. - Clark Kimberling, Sep 16 2008
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,2,-l)}).
LINKS
Volodymyr Mazorchuk and Xiaoyu Zhu, Combinatorics of infinite rank module categories over finite dimensional sl3-modules in Lie-algebraic context, arXiv:2501.00291 [math.RT], 2024. See page 9.
FORMULA
T(n,n-k) = T(n,k); T(2n,n) = (n+1)^3.
G.f.: (1 - x^2*y)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Oct 01 2023
EXAMPLE
Triangle begins:
1;
3, 3;
6, 8, 6;
10, 15, 15, 10;
15, 24, 27, 24, 15;
...
MAPLE
T:=proc(n, k) if k<=n then (k+1)*(n+2)*(n-k+1)/2 else 0 fi end: for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_]:= (k+1)(n+2)(n-k+1)/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Stefano Spezia, Jan 06 2025 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved