login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107692
Primes whose product of digits is 6.
12
23, 61, 1123, 1213, 1231, 1321, 2113, 2131, 2311, 3121, 11161, 11213, 11321, 12113, 13121, 16111, 31121, 111611, 611111, 1111213, 1112113, 1112131, 1131121, 1211311, 2111311, 3112111, 11111161, 11112113, 11211131, 11231111, 11312111
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10199 (all terms with <= 136 digits; terms 1..1000 from Harvey P. Dale)
MATHEMATICA
Union[ Flatten[ Table[ Select[ Sort[ FromDigits /@ Join[ Permutations[ Flatten[{6, Table[1, {n}]}]], Permutations[ Flatten[{2, 3, Table[ 1, {n - 1}]}] ]]], PrimeQ[ # ] &], {n, 0, 7}]]]
Select[Prime[Range[750000]], Times@@IntegerDigits[#]==6&] (* Harvey P. Dale, May 29 2016 *)
PROG
(Python)
from sympy import prod, isprime
from sympy.utilities.iterables import multiset_permutations
def agen(maxdigits):
for digs in range(1, maxdigits+1):
for mp in multiset_permutations("1"*(digs-1) + "236", digs):
if prod(map(int, mp)) == 6:
t = int("".join(mp))
if isprime(t): yield t
print(list(agen(8))) # Michael S. Branicky, Jun 16 2021
KEYWORD
base,nonn
AUTHOR
STATUS
approved