login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes with digital product = 3.
17

%I #12 Mar 13 2021 15:13:04

%S 3,13,31,113,131,311,11113,11131,11311,113111,131111,311111,11111131,

%T 11111311,11113111,11131111,111111113,111111131,111113111,131111111,

%U 11111111113,11111111131,11113111111,11131111111,31111111111

%N Primes with digital product = 3.

%H Harvey P. Dale, <a href="/A107689/b107689.txt">Table of n, a(n) for n = 1..500</a>

%t Flatten[ Table[ Select[ Sort[ FromDigits /@ Permutations[ Flatten[{3, Table[1, {n}]}]]], PrimeQ[ # ] &], {n, 0, 12}]]

%o (Python)

%o from sympy import isprime

%o def agen():

%o digits = 0

%o while True:

%o for i in range(digits+1):

%o t = int("1"*(digits-i) + "3" + "1"*i)

%o if isprime(t): yield t

%o digits += 1

%o g = agen()

%o print([next(g) for i in range(25)]) # _Michael S. Branicky_, Mar 13 2021

%Y Cf. A004022, A107612, A107690, A107691, A107692, A107693, A107694, A107695, A107696, A107697, A107698.

%Y Subsequence of A034050.

%K base,nonn

%O 1,1

%A _Zak Seidov_ and _Robert G. Wilson v_, May 20 2005