login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107659
a(n) = Sum_{k=0..n} 2^max(k, n-k).
3
1, 4, 10, 24, 52, 112, 232, 480, 976, 1984, 4000, 8064, 16192, 32512, 65152, 130560, 261376, 523264, 1047040, 2095104, 4191232, 8384512, 16771072, 33546240, 67096576, 134201344, 268410880, 536838144, 1073692672, 2147418112
OFFSET
0,2
COMMENTS
Define an infinite array by m(n,k) = 2^n-n+k for n>=k>=0 (in the lower left triangle) and by m(n,k) = 2^k+k-n for k>=n>=0 (in the upper right triangle). The antidiagonal sums of this array are a(n) = sum_{k=0..n} m(n-k,k). - J. M. Bergot, Aug 16 2013
FORMULA
a(2n) = 2^n(2^(n+2)-3), a(2n+1) = 2^n(2^(n+3)-4).
G.f.: (1+2*x)/[(1-2*x)*(1-2*x^2)].
a(n) = A122746(n) +2*A122746(n-1). - R. J. Mathar, Aug 16 2013
a(0)=1, a(1)=4, a(2)=10, a(n)=2*a(n-1)+2*a(n-2)-4*a(n-3). - Harvey P. Dale, Nov 10 2013
a(n) = 2^(n+2) - (2 + mod(n+1, 2)) * 2^floor((n+1)/2). - Michael Somos, Jun 24 2018
a(n) = - (2^(n+2)) * A052955(-n-3) for all n in Z. - Michael Somos, Jun 24 2018
EXAMPLE
G.f. = 1 + 4*x + 10*x^2 + 24*x^3 + 52*x^4 + 112*x^5 + 232*x^6 + 480*x^7 + ... - Michael Somos, Jun 24 2018
MATHEMATICA
Table[Sum[2^Max[k, n-k], {k, 0, n}], {n, 0, 30}] (* or *) LinearRecurrence[ {2, 2, -4}, {1, 4, 10}, 30] (* Harvey P. Dale, Nov 10 2013 *)
a[ n_] := 2^(n + 2) - (2 + Mod[n + 1, 2]) 2^Quotient[n + 1, 2]; (* Michael Somos, Jun 24 2018 *)
PROG
(PARI) {a(n) = 2^(n+2) - (2 + (n+1)%2) * 2^((n+1)\2)}; /* Michael Somos, Jun 24 2018 */
CROSSREFS
Sequence in context: A093831 A274582 A052365 * A162588 A280541 A080615
KEYWORD
nonn,easy
AUTHOR
STATUS
approved