login
A107604
Order of appearance of twos in the Fibonacci substitution :triangular in form.
0
2, 2, 2, 2, 5, 2, 5, 2, 5, 7, 2, 5, 7, 2, 5, 7, 2, 5, 7, 10, 2, 5, 7, 10, 2, 5, 7, 10, 2, 5, 7, 10, 13, 2, 5, 7, 10, 13, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 18, 2, 5, 7, 10, 13, 15, 18, 2, 5, 7, 10, 13, 15, 18, 20
OFFSET
0,1
COMMENTS
Fibonacci substitutions contain thrre types of informstion: 1) length 2) count of ones and twos 3) order of appearance of ones and twos
FORMULA
1->{1, 2}, 2->{1}
EXAMPLE
{}
2,
2,
2,
2,5,
2,5,
2,5,7,
2,5,7,
2,5,7,
2,5,7,10,
2,5,7,10,
2,5,7,10,
2,5,7,10,13
MATHEMATICA
s[1] = {1, 2}; s[2] = {1};; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] a = Table[Flatten[Table[If[p[i][[j]] == 2, j, {}], {j, 1, i}]], {i, 1, 20}]
CROSSREFS
Cf. A000045.
Sequence in context: A154097 A221491 A224254 * A080647 A324516 A181058
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Jun 09 2005
STATUS
approved