login
A107392
Number of (inequivalent) fuzzy subgroups of the direct sum of group of integers modulo p^n and group of integers modulo 2 for a prime p with (p,2) = 1. Z_{p^n} + Z_2.
5
7, 31, 103, 303, 831, 2175, 5503, 13567, 32767, 77823, 182271, 421887, 966655, 2195455, 4947967, 11075583, 24641535, 54525951, 120061951, 263192575, 574619647, 1249902591, 2709520383, 5855248383, 12616466431, 27111981055, 58116276223, 124285616127
OFFSET
0,1
COMMENTS
This is just one row of a double sequence a(n,m) for n = 0,1,2, ... and m = 0,1,2,...: a(n,m) = 2^(n+m+1)*(Sum_{r=0..m} (2^(-r) * binomial(n, n-r)* binomial(m, r))) - 1, with 0 <= m <= n and a(0,0)=1.
LINKS
V. Murali and B. B. Makamba, Fuzzy subgroups of finite Abelian groups, Far East Journal of Mathematical Sciences (FJMS), Vol. 14, No. 1 (2004), pp. 113-125.
V. Murali and B. B. Makamba, Counting the fuzzy subgroups of an Abelian group of order p^n q^m, Fuzzy Sets And Systems, Vol. 144, No.3 (2004), pp. 459-470.
FORMULA
a(n) = (2^n)*(n^2 + 7n + 8) - 1 for n=0..14.
G.f.: (12*x^2 - 18*x + 7) / ((x-1)*(2*x-1)^3). - Colin Barker, Jan 15 2015
EXAMPLE
a(3) = 303. A fuzzy subgroup is simply a chain of subgroups in the lattice of subgroups. Counting of chains in the lattice of subgroups of Z_{p^3} + Z_2 gives us a(3) = 303. The two papers cited describe the counting process using fuzzy subgroup concept.
MATHEMATICA
LinearRecurrence[{7, -18, 20, -8}, {7, 31, 103, 303}, 30] (* Harvey P. Dale, Dec 31 2015 *)
PROG
(PARI) Vec((12*x^2-18*x+7)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Jan 15 2015
CROSSREFS
Sequence in context: A218956 A139876 A222265 * A054497 A235593 A119359
KEYWORD
nonn,easy
AUTHOR
Venkat Murali (v.murali(AT)ru.ac.za), May 25 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved