login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*a(n-1)-3*a(n-2) -3*a(n-3) +2*a(n-4) + a(n-5), n>7.
0

%I #7 Dec 17 2017 13:05:53

%S 4,3,9,17,40,92,215,506,1200,2861,6848,16436,39523,95162,229328,

%T 552977,1333920,3218612,7767575,18747986,45254200,109241261,263712248,

%U 636626156,1536900483,3710323442

%N a(n) = 4*a(n-1)-3*a(n-2) -3*a(n-3) +2*a(n-4) + a(n-5), n>7.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-3,2,1).

%F G.f.: (-2*x^3+3*x^6+x^7-9*x^2+13*x-4)/((x-1)* (x^2+x-1) * (x^2+2*x-1) ). [Sep 28 2009]

%F a(n) = 1+A000032(n) + A002203(n), n>2 [Sep 28 2009].

%t n = 3; b4 = x /. NSolve[x^4 - n*x^3 + n*x + 1 == 0, x][[4]] b3 = x /. NSolve[x^4 - n*x^3 + n*x + 1 == 0, x][[3]] b2 = x /. NSolve[x^4 - n*x^3 + n*x + 1 == 0, x][[2]] b1 = x /. NSolve[x^4 - n*x^3 + n*x + 1 == 0, x][[1]] digits = 25 a = Table[n*(b4^m + b3^m + b1^m + b2^m)/ (b4 + b3 + b2 + b1), {n, 0, digits}]

%K nonn,easy

%O 0,1

%A _Roger L. Bagula_, May 24 2005

%E Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009