login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1-3*x-2*x^2)/(1-4*x+4*x^3+x^4).
1

%I #13 Aug 30 2020 15:23:22

%S 0,1,1,2,4,11,35,122,440,1609,5913,21770,80204,295555,1089227,4014322,

%T 14794864,54526993,200961457,740652050,2729705364,10060448635,

%U 37078224883,136653426026,503642204200,1856195468633,6841089945545

%N Expansion of x*(1-3*x-2*x^2)/(1-4*x+4*x^3+x^4).

%C Sequence produced by 4 X 4 Markov chain with characteristic polynomial x^4-4*x^3+4*x+1.

%C Setting m=3 gives a Fibonacci sequence.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-4,-1)

%t m = 4 M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, -m, 0, m}} Expand[Det[M - x*IdentityMatrix[4]]] NSolve[Det[M - x*IdentityMatrix[4]] == 0, x] v[1] = {0, 1, 1, 2}; v[n_] := v[n] = M.v[n - 1]; digits = 50; a = Table[v[n][[1]], {n, 1, digits}]

%t CoefficientList[Series[x (1-3x-2x^2)/(1-4x+4x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-4,-1},{0,1,1,2},30] (* _Harvey P. Dale_, Aug 30 2020 *)

%o (PARI) Vec(x*(1-3*x-2*x^2)/(1-4*x+4*x^3+x^4)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A107377.

%K nonn,easy

%O 0,4

%A _Roger L. Bagula_, May 24 2005

%E Edited by _N. J. A. Sloane_, Jul 13 2007