login
Primes of the form 2x^2 + 45y^2.
1

%I #18 Feb 10 2017 15:05:37

%S 2,47,53,173,383,503,557,647,743,797,983,1013,1103,1223,1367,1373,

%T 1613,1637,1847,1973,2087,2207,2213,2237,2333,2357,2447,2477,2543,

%U 2693,2927,3407,3557,3677,3767,3863,3917,4013,4127,4157,4253,4463

%N Primes of the form 2x^2 + 45y^2.

%C Discriminant = -360. See A107132 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A107205/b107205.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t QuadPrimes2[2, 0, 45, 10000] (* see A106856 *)

%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\45), if(isprime(t=w+45*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 13 2005