login
A107202
Primes of the form x^2 + 88y^2.
2
89, 97, 113, 137, 257, 313, 353, 401, 433, 449, 521, 577, 617, 641, 881, 929, 977, 1049, 1153, 1193, 1321, 1409, 1433, 1489, 1609, 1697, 1721, 1753, 1873, 2017, 2113, 2137, 2161, 2281, 2297, 2377, 2473, 2633, 2689, 2729, 2753, 2777, 2897
OFFSET
1,1
COMMENTS
Discriminant = -352. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {1, 9, 25, 49, 81} (mod 88). - T. D. Noe, Apr 29 2008
MATHEMATICA
QuadPrimes2[1, 0, 88, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(4000) | p mod 88 in {1, 9, 25, 49, 81}]; // Vincenzo Librandi, Jul 28 2012
(PARI) list(lim)=my(v=List(), s=[1, 9, 25, 49, 81]); forprime(p=89, lim, if(setsearch(s, p%88), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A139643.
Sequence in context: A253648 A373915 A088993 * A260807 A178917 A159026
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved