login
A107151
Primes of the form 5x^2 + 9y^2.
3
5, 29, 41, 89, 101, 149, 269, 281, 389, 401, 449, 461, 509, 521, 569, 641, 701, 761, 809, 821, 881, 929, 941, 1049, 1061, 1109, 1181, 1229, 1289, 1301, 1361, 1409, 1481, 1601, 1709, 1721, 1889, 1901, 1949, 2069, 2081, 2129, 2141, 2309, 2381
OFFSET
1,1
COMMENTS
Discriminant = -180. See A107132 for more information.
Except for 5, also primes of the form 9x^2 + 6xy + 26y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 5, the primes are congruent to {29, 41} (mod 60). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 9, 10000] (* see A106856 *)
PROG
(Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 60 in {29, 41 } ]; // Vincenzo Librandi, Jul 24 2012
(PARI) list(lim)=my(v=List([5]), t); forprime(p=29, lim, t=p%60; if(t==29||t==41, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A139827.
Sequence in context: A091729 A033205 A167742 * A340154 A117746 A156053
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved