login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106853
Expansion of 1/(1 - x + 4*x^2).
16
1, 1, -3, -7, 5, 33, 13, -119, -171, 305, 989, -231, -4187, -3263, 13485, 26537, -27403, -133551, -23939, 510265, 606021, -1435039, -3859123, 1881033, 17317525, 9793393, -59476707, -98650279, 139256549, 533857665, -23168531, -2158599191, -2065925067
OFFSET
0,3
COMMENTS
Row sums of Riordan array (1,x(1-4x)). In general, a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*r^(n-k) yields the row sums of the Riordan array (1,x(1-kx)).
For n >= 1, a(n) equals the determinant of the n X n matrix with 2's along the superdiagonal and the subdiagonal, and 1's along the main diagonal, and 0's everywhere else. - John M. Campbell, Jun 04 2011
For n >= 1, |a(n-1)| is the unique odd positive solution x to 4^(n+1) = 15*x^2 + y^2. The value of y is |A272931(n)|. - Jianing Song, Jan 22 2019
Define the sequence u(n) = (u(n-1) + u(n-2))/u(n-3) with u(1) = 1, u(2) = -1, u(3) = 2. Then u(4*n) = 2*(a(n-1)+4*a(n-2))*a(n-1)/(a(n)+a(n-1))/a(n), u(4*n+1) = a(n+1)/a(n), u(4*n+2) = -1, u(4*n+3) = 4*(a(n)+a(n-1))/(a(n)+a(n+1)). For example, a(2) = -3, a(3) = -7 and u(8) = 5/3, u(9) = 7/3, u(10) = -1. - Michael Somos, Oct 24 2023
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 15.
FORMULA
G.f.: 1/(1 - x + 4*x^2).
a(n) = 2^n*(cos(2*n*arctan(sqrt(15)/5))+sqrt(15)*sin(2*n*arctan(sqrt(15)/5))/15).
a(n) = ((1 + sqrt(-15))^(n+1) - (1 - sqrt(-15))^(n+1))/(2^(n+1)*sqrt(-15)).
a(n) = Sum_{k=0..n} ((-1)^(n-k)*binomial(k, n-k)*4^(n-k)).
a(n) = a(n-1) - 4*a(n-2), a(0) = 1, a(1) = 1. - Philippe Deléham, Oct 21 2008
a(n) = Sum_{k=0..n} A109466(n,k)*4^(n-k). - Philippe Deléham, Oct 25 2008
G.f.: 1/(1 - 2*x)^2/(1 + 3*x*G(0)/2), where G(k) = 1 + 1/(1 - x/(x + (k + 1)/(2*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
For n >= 1, 15*A272931(n)^2 + a(n-1)^2 = 4^(n+1). - Jianing Song, Jan 22 2019
a(n) = Product_{k=1..n} (1 + 4*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
a(n) = 2^n * U(n, 1/4), where U(n, x) is the Chebyshev polynomial of the second kind. - Federico Provvedi, Mar 28 2022
EXAMPLE
G.f. = 1 + x - 3*x^2 - 7*x^3 + 5*x^4 + 33*x^5 + 13*x^6 - 119*x^7 - 171*x^8 + ... - Michael Somos, Oct 24 2023
MAPLE
f:= gfun:-rectoproc({a(n)=a(n-1)-4*a(n-2), a(0)=1, a(1)=1}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Jan 15 2018
MATHEMATICA
Join[{a=1, b=1}, Table[c=b-4*a; a=b; b=c, {n, 80}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
CoefficientList[Series[1/(1-x*(1-4x)), {x, 0, 40}], x] (* or *) LinearRecurrence[ {1, -4}, {1, 1}, 40] (* Harvey P. Dale, May 26 2013 *)
a[ n_] := 2^n * ChebyshevU[n, 1/4]; (* Michael Somos, Oct 24 2023 *)
PROG
(Sage) [lucas_number1(n, 1, 4) for n in range(1, 36)] # Zerinvary Lajos, Apr 22 2009
(PARI) x='x+O('x^30); Vec(1/(1-x+4*x^2)) \\ G. C. Greubel, Jan 14 2018
(Magma) I:=[1, 1]; [n le 2 select I[n] else Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 14 2018
(PARI) {a(n) = 2^n*polchebyshev(n, 2, 1/4)}; /* Michael Somos, Oct 24 2023 */
CROSSREFS
Sequence in context: A161818 A161509 A108974 * A352011 A083778 A107785
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 08 2005
STATUS
approved