login
A106351
Triangle read by rows: T(n,k) = number of compositions of n into k parts such that no two adjacent parts are equal.
34
1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 0, 1, 4, 7, 2, 0, 0, 1, 6, 9, 6, 1, 0, 0, 1, 6, 15, 14, 3, 0, 0, 0, 1, 8, 21, 24, 15, 2, 0, 0, 0, 1, 8, 28, 46, 30, 10, 1, 0, 0, 0, 1, 10, 35, 66, 68, 30, 4, 0, 0, 0, 0, 1, 10, 46, 100, 119, 76, 24, 2, 0, 0, 0, 0, 1, 12, 54, 138, 204, 168, 69, 14, 1, 0, 0, 0, 0
OFFSET
1,5
LINKS
A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
FORMULA
G.f.: 1/(1 - Sum_{k>0} (-1)^(k+1)*x^k*y^k/(1-x^k).
EXAMPLE
T(6,3) = 7 because the compositions of 6 into 3 parts with no adjacent equal parts are 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 1+4+1.
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 2, 1, 0;
1, 4, 2, 0, 0;
1, 4, 7, 2, 0, 0;
1, 6, 9, 6, 1, 0, 0;
1, 6, 15, 14, 3, 0, 0, 0;
1, 8, 21, 24, 15, 2, 0, 0, 0;
...
MAPLE
b:= proc(n, h, t) option remember;
if n<t then 0
elif n=0 then `if`(t=0, 1, 0)
else add(`if`(h=j, 0, b(n-j, j, t-1)), j=1..n)
fi
end:
T:= (n, k)-> b(n, -1, k):
seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Oct 23 2011
MATHEMATICA
nn=10; CoefficientList[Series[1/(1-Sum[y x^i/(1+y x^i), {i, 1, nn}]), {x, 0, nn}], {x, y}]//Grid (* Geoffrey Critzer, Nov 23 2013 *)
PROG
(PARI)
gf(n, y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))}
for(n=1, 10, my(p=polcoeff(gf(n, y), n)); for(k=1, n, print1(polcoeff(p, k), ", ")); print); \\ Andrew Howroyd, Oct 12 2017
CROSSREFS
Row sums: A003242. Columns 3-6: A106352, A106353, A106354, A106355.
Cf. A131044 (at least two adjacent parts are equal).
T(2n,n) gives A221235.
Sequence in context: A054523 A161363 A293136 * A360764 A096800 A036586
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Apr 29 2005
STATUS
approved