login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106186
Expansion of 1/sqrt(1-4x+4x^2-16x^3).
1
1, 2, 4, 16, 64, 224, 800, 3008, 11392, 43008, 163328, 624640, 2397696, 9227264, 35608576, 137764864, 534102016, 2074394624, 8069922816, 31440338944, 122652655616, 479052693504, 1873097261056, 7331070869504, 28718945140736
OFFSET
0,2
COMMENTS
In general, f(n) = Sum_{k=0..floor(n/2)} C(2k,k)C(2(n-2k),n-2k)*r^k has g.f. 1/sqrt(1-4x-4r*x^2+16r*x^3).
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
FORMULA
a(n)=sum{k=0..floor(n/2), C(2k, k)C(2(n-2k), n-2k)*(-1)^k}.
D-finite with recurrence: n*a(n)+2(1-2n)*a(n-1) +4(n-1)*a(n-2)+8(3-2n)*a(n-3)=0. - R. J. Mathar, Dec 08 2011
a(n) ~ 2^(2*n+1)/sqrt(5*Pi*n). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x+4x^2-16x^3], {x, 0, 30}], x] (* Harvey P. Dale, May 17 2012 *)
CROSSREFS
Sequence in context: A127588 A187822 A092585 * A155543 A151371 A001900
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 24 2005
STATUS
approved