OFFSET
0,2
COMMENTS
Silver mean chain substitution sequence: characteristic polynomial = -x^2+2*x+1.
A space-filling lattice is given by: bb = aa /. 1 -> {-0.4142135623730951, 2.414213562373095} /. 2 -> {1,-0.414213562373095`} /. 3 -> 0; ListPlot[FoldList[Plus, {0, 0}, bb], PlotRange -> All, PlotJoined -> False, Axes -> False];
The sequence is S_oo where S_0 = 2, S_1 = 1; S_{n+2} = S_{n+1} S_n S_{n+1}. Used to construct the "labyrinth" tiling. - N. J. A. Sloane, Mar 13 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1392
M. Baake and R. V. Moody, Self-Similar Measures for Quasicrystals, in Directions in Mathematical Quasicrystals (eds. M. Baake and R. V. Moody), CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 1-42; arXiv:math/0008063 [math.MG], 2000.
Clément Sire, Rémy Mosseri, and Jean-François Sadoc, Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling, Journal de Physique 50.24 (1989): 3463-3476. See Eq. 2; HAL Id : jpa-00211156.
MAPLE
f(1):= (1, 2, 1): f(2):= (1): A:= [1]:
for i from 1 to 6 do A:= map(f, A) od:
A; # - N. J. A. Sloane, Mar 13 2019
MATHEMATICA
s[1] = {1, 2, 1}; s[2] = {1}; s[3] = {}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[6]
Nest[Function[l, Flatten[l/.{1->{1, 2, 1}, 2->{1}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *)
SubstitutionSystem[{1->{1, 2, 1}, 2->{1}}, {1}, {6}]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 05 2005
STATUS
approved