login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105955
a(n) = Fibonacci(n) mod 11.
2
0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0
OFFSET
0,4
FORMULA
From Colin Barker, Jan 02 2018: (Start)
G.f.: x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 2*x^6 + 10*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 38*a(n-7) - a(n-14) for n>9.
(End)
EXAMPLE
Sequence is periodic with Pisano period 10. - Corrected by U. Takasi, Dec 27 2009
MATHEMATICA
Mod[Fibonacci[Range[0, 100]], 11] (* Harvey P. Dale, Jul 27 2012 *)
PROG
(Magma) [Fibonacci(n) mod 11: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
(PARI) for(n=0, 100, print1(fibonacci(n)%11, ", ")) \\ G. C. Greubel, Jan 01 2018
(PARI) concat(0, Vec(x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 2*x^6 + 10*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, Jan 02 2018
CROSSREFS
Sequence in context: A247193 A362358 A096320 * A003893 A152303 A064737
KEYWORD
nonn,easy
AUTHOR
Shyam Sunder Gupta, May 05 2005
EXTENSIONS
Added a(0)=0 from Vincenzo Librandi, Feb 04 2014
STATUS
approved