login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105658
Product_{i=1..n} i^i / denominator( Sum_{j=1..n} j(j+1)/2 / (Product_{k=0..i-1} j!/k!) ).
7
1, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 143, 7, 15, 104, 935, 9, 19, 10, 21, 11, 4025, 3900, 325, 3289, 27, 14, 29, 15, 31, 368, 33, 17, 35, 18, 185, 19, 39, 380, 451, 399, 215, 770, 45, 23, 29563, 24, 12397, 725, 51, 26, 1537, 837, 2365, 1036, 285, 377, 2537, 30
OFFSET
0,4
COMMENTS
Most of the time a(2n-1)=2n-1, but a(2n-1)!=2n-1 for 2n-1 = 13,17,23,25,37,41,43,47,49,53,55,57,59,61,63,...
Most of the time a(2n)=n, but a(2n)!=n for 2n = 16,24,26,32,40,42,44,50,54,56,58,64,84,86,96,100,102,104,...
EXAMPLE
a(3) = 108/36 = 3.
MATHEMATICA
f[n_] := Product[k^k, {k, 1, n}]/ Denominator[Sum[i(i + 1)/2/Product[i!/j!, {j, 0, i - 1}], {i, n}]]; Table[ f[n], {n, 0, 61}] (* Robert G. Wilson v, Apr 18 2005 *)
CROSSREFS
Cf. A002109 - hyperfactorial numbers.
Sequence in context: A176447 A145051 A026741 * A083242 A111618 A107128
KEYWORD
nonn
AUTHOR
Jess E. Boling (tdbpeekitup(AT)yahoo.com), Apr 17 2005
EXTENSIONS
Edited by Robert G. Wilson v, Apr 18 2005
STATUS
approved