login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105554
Primes whose indices are the sum of the first n+1 Fibonacci numbers.
1
2, 3, 7, 17, 37, 71, 137, 251, 457, 823, 1459, 2579, 4483, 7789, 13463, 23143, 39769, 67927, 115823, 196681, 333227, 563971, 951553, 1603471, 2696653, 4528921, 7594759, 12717701, 21275489, 35548187, 59328121, 98921047, 164781917
OFFSET
1,1
COMMENTS
We avoid testing for existence in the script by beginning with x=1.
Sum[i=1 to n+1]F(i) = F(n+3) - 1. See equation (18) of the Weisstein reference. - Jonathan Vos Post, May 05 2005
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number.
FORMULA
a(n) = prime(F(n+3) - 1) = A000040(A000045(n+3)-1). - Jonathan Vos Post, May 05 2005
EXAMPLE
a(1) = prime(Fibonacci(0) + Fibonacci(1)) = prime(0+1) = prime(1) = 2.
a(3) = prime(Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3)) = prime(4) = 7.
MATHEMATICA
Prime[Accumulate[Fibonacci[Range[40]]]] (* Harvey P. Dale, Aug 14 2023 *)
PROG
(PARI) g(n) = s=0; for(x=1, n, s+=fibonacci(x); print1(prime(s)", "))
CROSSREFS
Sequence in context: A267601 A155548 A191033 * A145230 A135364 A051291
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 03 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 15 2006
STATUS
approved